Isoflurane, but not halothane, induces protection of human myocardium via adenosine A1 receptors and adenosine triphosphate-sensitive potassium channels.

نویسندگان

  • A K Roscoe
  • J D Christensen
  • C Lynch
چکیده

BACKGROUND Volatile anesthetics produce differing degrees of myocardial protection in animal models of ischemia. The purpose of the current investigation was to determine the influence of isoflurane and halothane on myocardial protection in a human model of simulated ischemia and the role of adenosine A1 receptors and adenosine triphosphate-sensitive potassium (KATP) channels in the anesthetic pathway. METHODS Human atrial trabecular muscles were superfused with oxygenated Krebs-Henseleit buffer and stimulated at 1 Hz, with recording of maximum contractile force. Fifteen minutes before a 30-min anoxic insult, muscles were pretreated for 5 min with either anoxia, the A1 agonist N6-cyclohexyladenosine, 1% halothane or 1.2% isoflurane. These treatments were also performed in the presence of either the KATP channel antagonist glibenclamide or the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). Anesthetic effects were also determined on KATP currents in isolated whole cell voltage-clamped human atrial myocytes. RESULTS Recovery of force (recorded 60 min after anoxia) in isoflurane-pretreated muscles was reduced from 76.6 +/- 7.5% of baseline to 43.7 +/- 7.1% by pretreatment with glibenclamide, and to 52.5 +/- 6.2% by pretreatment with DPCPX. Halothane treatment provided no cardioprotection and seemed to inhibit protection by anoxic preconditioning. Halothane decreased whole cell KATP currents in atrial myocytes, whereas isoflurane had no effects. CONCLUSIONS This study demonstrates the cardioprotective effects of isoflurane in contrast to the effects of halothane. Furthermore, A1 receptors and KATP channels seem to mediate the beneficial effects of anoxia and isoflurane in human myocardium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isoflurane-enhanced recovery of canine stunned myocardium: role for protein kinase C?

BACKGROUND Isoflurane enhances the functional recovery of postischemic, reperfused myocardium by activating adenosine A1 receptors and adenosine triphosphate-regulated potassium channels. Whether protein kinase C is involved in this process is unknown. The authors tested the hypothesis that inhibition of protein kinase C, using the selective antagonist bisindolylmaleimide, attenuates isoflurane...

متن کامل

Isoflurane pretreatment inhibits cytokine-induced cell death in cultured rat smooth muscle cells and human endothelial cells.

BACKGROUND Anesthetics are protective during ischemic-reperfusion injury and associated inflammation; therefore, the authors hypothesized that anesthetic pretreatment may provide protection in culture from cytokine-induced cell death. METHODS Rat vascular smooth muscle (VSM) cell and human umbilical vascular endothelial cell (HUVEC) cultures were used to determine whether pretreatment with 30...

متن کامل

Relaxation of proximal and distal isolated human bronchi by halothane, isoflurane and desflurane.

Volatile anaesthetics relax airway smooth muscle in vitro. The amount of relaxation might depend on the type and concentration of volatile anaesthetics, the calibre and precontraction level of the bronchi, and also on the species considered. These effects were investigated on isolated human bronchi. Isometric relaxations produced by halothane, isoflurane and desflurane bubbled on human bronchia...

متن کامل

Isoflurane activates human cardiac mitochondrial adenosine triphosphate-sensitive K+ channels reconstituted in lipid bilayers.

BACKGROUND Activation of the mitochondrial adenosine triphosphate (ATP)-sensitive K+ channel (mitoK(ATP)) has been proposed as a critical step in myocardial protection by isoflurane-induced preconditioning in humans and animals. Recent evidence suggests that reactive oxygen species (ROS) may mediate isoflurane-mediated myocardial protection. In this study, we examined the direct effect of isofl...

متن کامل

Differential modulation of the cardiac adenosine triphosphate-sensitive potassium channel by isoflurane and halothane.

BACKGROUND The cardiac adenosine triphosphate-sensitive potassium (K(ATP)) channel is activated during pathophysiological episodes such as ischemia and hypoxia and may lead to beneficial effects on cardiac function. Studies of volatile anesthetic interactions with the cardiac K(ATP) channel have been limited. The goal of this study was to investigate the ability of volatile anesthetics halothan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Anesthesiology

دوره 92 6  شماره 

صفحات  -

تاریخ انتشار 2000